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ABSTRACT 
 
Cementitious materials are used in a variety of ways for the containment, 
treatment and disposal of waste.  This document explores some of these 
applications and provides a review of how cementitious materials have been used 
across the Department of Energy (DOE) complex.  The intent is to highlight 
cementitious waste formulations, installations, experimental work, and modeling 
efforts supported by a variety of DOE programs. Further focus is provided regarding 
how/where cementitious materials are used for: waste stream treatment, 
production of containment structures, closure of tanks, in-situ decommissioning of 
reactors, and environmental restoration.   
 
INTRODUCTION 
 
The Department of Energy (DOE) is tasked with managing the legacy defense 
wastes that resulted from nuclear materials production and nuclear arms 
development.  Nuclear-waste management encompasses generation, processing 
(treatment and packaging), storage, transport, and disposal[1].  To date, there are 
over 100 million gallons of liquid radioactive and chemical mixed wastes within the 
Department of Energy complex as well as solid waste, debris, and environmental 
restoration media that require disposal[2]. 
 
The ultimate disposal paths for these wastes depend on the source, waste 
classification, type, concentration, expected lifetime of contaminants present, the 
type(s) of storage and/or disposal required, as well as the regulations associated 
with each[3]. 
 
The use of cementitious materials is technically mature, with thousands of papers 
written on the hydration and setting of cement[4-6].  The comprehensive 
characterization of cementitious materials, relative simplicity of low-temperature 
processing, and (comparatively) low price tag, is why they are a popular means for 
disposal of low level (LLW), intermediate, and secondary wastes.  Only the Hanford 
Site plans to vitrify low-activity waste (LAW).   
 
In addition to highlighting how the DOE has used/uses cementitious materials for 
treating/disposing of waste, this paper also provides a broad-based review of the 
implementations, experimental work/research, and modeling efforts performed 
within the DOE complex with/on these materials, and is intended to serve as a 
directory on where more information pertaining to how cementitious materials have 
been utilized to serve the DOE mission can be found.  Implementations include: 
processing, immobilizing, isolating and housing of LLW, intermediate, and 
secondary solid and liquid wastes.   
 



WM2017 Conference, March 5-9, 2017, Phoenix, Arizona, USA 
 

2 
 

IMPLEMENTATIONS 
 
Waste Treatment 
 
Cementitious materials are often selected for treating a wide variety of low level 
waste that typically contains the following contaminants:  Ce, Cs, Hg, I, Sr, Tc, Th, 
transuranic (TRU), and those categorized under the Resource Conservation and 
Recovery Act (RCRA)[2, 7]. 
 
The primary objective of a cementitious waste form is to solidify/stabilize the waste 
to prohibit environmental exposure.  This is typically done by encapsulating and/or 
sorbing the contaminants in the cementitious matrix.  Several formulations for 
incorporating/immobilizing waste have been studied[3, 8-15], and similar dry-blend 
compositions are currently in use at both Savannah River Site (SRS) (45 wt% slag 
cement, 45 wt% Class F fly ash, and 10 wt% Type I/II Portland cement) and 
Hanford (47 wt% blast furnace slag, 45 wt% Class F fly ash, and 8 wt% Type I/II 
Portland cement)[12].  Once these dry-blends have been mixed with the liquid 
waste, they are pumped into disposal units. An example of how this final waste 
form is stored is shown in Figure 1.  
 

 
Figure 1: Containment Structure for Saltstone Disposal[16]  

 
A table illustrating the magnitude of cementitious materials used for the treatment 
of waste at the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) is 
shown below. 
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Table I FY2016 Saltstone Processing Summary[17] 

 
Saltstone 
Disposal 
Unit 5A 

Saltstone 
Disposal 
Unit 5B 

Total in SDF 
during FY2016 

FY2016 Volume of Salt Waste 
Disposed (L) ~5.2 x 106 ~4.7 x 105 ~5.7 x 106 

FY2016 Volume of Saltstone 
Emplaced (L) ~9.1 x 106 ~8.7 x 105 ~10 x 106 

FY2016 Curies Disposed (Bq) ~3.1 x 1014 ~1.6 x 1013 ~3.2 x 1014 
 
Much of the recent experimental work has largely concentrated on waste forms, 
with particular focus typically on one of three distinct areas; 1) 
increasing/maximizing the waste loading in cementitious waste forms[18-22], 2) 
improving the retention of waste form contaminants such as Tc, I, and Hg[12, 23-
26], and 3) elucidating how waste forms/containment structures change with time 
under a variety of environments in an attempt to supplement modeling efforts on 
long term performance[16, 27-38].  Other research efforts have focused on 
providing an alternative material, such as Ceramicrete™ (chemically bonded 
phosphate ceramics) and DuraLith (aluminosilicate geopolymer), to ordinary 
cements and alkali-activated cements (i.e. slag containing cements) for treating 
radioactive and hazardous wastes[5, 23, 39, 40].   
 
Containment Structures 
 
Cementitious materials are also used for a variety of structural applications for 
containing and/or isolating waste.  Some of these include vaults (such as the E-
Area low level waste vaults at SRS)[41, 42], secondary containment for tanks, 
basins (such as the waste encapsulation storage facility basin at Hanford)[43, 44], 
and disposal units[45].  Construction of a 184 foot long (~56 meter) by 83 foot 
(~25 meter) wide basin, made with Type K cement, located in Oak Ridge, 
Tennessee is shown in Figure 2. 
 

 
Figure 2: Construction of Concrete Basin at Oak Ridge[43]  
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A few of the disposal units present at SRS are shown in Figure 3a.  For perspective 
the disposal units labeled SDU 2, 3 and 5 are 150 feet (~46 meters) in diameter 
and 22 feet (~7 meters) high with a capacity of approximately 2.9 million gallons 
(~11 million liters).  The new generation unit labeled SDU 6 is 375 feet (~114 
meters) in diameter and 44 feet (~13 meters) high with a capacity of over 32 
million gallons (~121 million liters), the inside of which is shown in Figure 3b.   

 

  
Figure 3: (a) Aerial View of Saltstone Disposal Units (SDUs) at SRS, (b) Inside View 

of SDU 6 
 
Of particular interest, is how these containment structures withstand time due to 
interaction with the environment and radiation exposure.  Because of this interest, 
these structural containments are monitored and their performance is 
assessed[46].   
 
Tank Closure 
 
There are over 330 tanks within the DOE complex that require closure.  Closure 
refers to the process of filling an emptied waste tank with cementitious fill material 
to ensure the tank does not collapse, and that no incidental release of remaining 
contaminants occurs[4, 47].  Modest progress has been made to date.  The 
Savannah River Site (SRS) has successfully closed Tanks 17-F, 20-F, 18-F, 19-F, 5-
F, 6-F, 16-H, and 12-H [47-50].  The Idaho Nuclear Technology and Engineering 
Center (INTEC) has closed four 110 m3 and seven 1100 m3 tanks at the Tank Farm 
Facility (TFF)[51].  Additionally, West Valley has pre-treated[52] and evaporated 
the liquid from tanks 8D-1, 8D-2, 8D-3, and 8D-4[53] as they work towards 
completing closure of their tanks.   
 
Some of the challenges of tank closure include the presence of residual waste, or 
“heels”, and also interior tank artifact equipment (such as cooling coils and air lift 
circulators) that must also be considered[54].  Because of these challenges, 
strategic cleaning[51] and pour strategies have been implemented to incorporate 
waste that could not safely be removed; an example of this pour strategy is shown 
in Figure 4. 

SPF 

SDU 1 SDU 4 

SDU 5 
SDU 3 

SDU 2 

SDU 6 

a b 
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Figure 4:  Sequential Grout Placement During Tank Closure at the Idaho National 

Laboratory[54] 
 
As identified by Langton et al., cementitious materials used for filling tanks at the 
Hanford Site must be self-leveling  and pumpable, have a low viscosity, set in the 
order of weeks to months, have minimal bleed water, be resistant to solids 
segregation, have a low heat of hydration, be capable of irreversibly 
sorbing/stabilizing contaminants of interest, be resistant to leaching for 500 to 
1000 years, and be capable of flowing through soils[2].  Many of these criteria are 
required throughout the DOE complex[55].  Figure 5 below shows the emptied out 
Tank 18 (at SRS) which previously held more than 1 million gallons (~ 4 million 
liters) of waste, being filled. 
 

 
Figure 5:  SRS Tank 18 Being Filled with Cementitious Material 

 
In-situ Decommissioning 
 
In-situ decommissioning has been used throughout the DOE complex for isolating 
the radioactive and hazardous components of a facility such that it is left in a safe 
state[56-60], and is predominantly adopted when it has been evaluated to be safer 
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and more cost effective than complete demolition, removal and transport[61].  In 
this process, a cementitious material is used to selectively fill areas of the reactor 
facility, permanently entombing and stabilizing residual contaminants and debris 
below grade[62]. 
 
In-situ decommissioning requires a cementitious mix that can be easily pumped, is 
sufficiently flowable to reach remote locations, is self-leveling, can incorporate 
additives to counteract set-times, and exhibits long term stability[61].  An 
illustration of this process that was successfully utilized for decommissioning of the 
P-Reactor at the Savannah River Site (SRS) is shown in Figure 6. 
 

 
Figure 6:  Illustration of In-Situ Decommissioning of P-Reactor at SRS[63] 

 
Environmental Restoration 
 
Environmental restoration refers to the process of remediating hazardous wastes to 
restore damaged or degraded ecosystems.  Examples of this include seepage 
basins[64, 65], and curtains[66-68].  One example of a grout curtain can be seen 
at SRS, where deep soil mixing with a low permeable grout was utilized to form a 
barrier to minimize contaminant migration to groundwater)[67, 68].  This 
installation, shown in Figure 7, covered a linear distance of 1400 feet (~427 
meters) and depths of 70 feet (~21 meters).   
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Figure 7:  F-Area Seepage Basin Grout Wall During (Left) and After (Right) 

Installation at SRS. 
 
SRS has also investigated permeable active amendment concrete (PAAC) to allow 
for insitu remediation of contaminants and provide an alternative to capping[69]. 
 
CONCLUSIONS 
 
To date cementitious materials have been used in a variety of ways for the 
containment, treatment and disposal of large quantities of waste within the DOE 
complex.  Applications range from incorporating liquid waste constituents into a 
cementitious-based matrix, and containing/isolating waste materials; to 
decommissioning facilities, closing tanks, capping contaminated soils and 
encompassing waste constituents for long term disposal.  Significant work has been 
done to identify the processing/performance parameters required for specific 
applications, and many research/modeling efforts have been focused on methods to 
increase waste loading and predicting and improving long term material 
performance. 
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